Cart (Loading....) | Create Account
Close category search window
 

Classification of Energy Consumption in Buildings With Outlier Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoli Li ; Inst. of Electr. Eng., Yanshan Univ., Qinhuangdao, China ; Bowers, C.P. ; Schnier, T.

In this paper, we propose an intelligent data-analysis method for modeling and prediction of daily electricity consumption in buildings. The objective is to enable a building-management system to be used for forecasting and detection of abnormal energy use. First, an outlier-detection method is proposed to identify abnormally high or low energy use in a building. Then a canonical variate analysis is employed to describe latent variables of daily electricity-consumption profiles, which can be used to group the data sets into different clusters. Finally, a simple classifier is used to predict the daily electricity-consumption profiles. A case study, based on a mixed-use environment, was studied. The results demonstrate that the method proposed in this paper can be used in conjunction with a building-management system to identify abnormal utility consumption and notify building operators in real time.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:57 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.