By Topic

Real-Time Motion Planning With Applications to Autonomous Urban Driving

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yoshiaki Kuwata ; Dept. of Aeronaut. & Astronaut., Massachusetts Inst. of Technol., Cambridge, MA, USA ; Justin Teo ; Gaston Fiore ; Sertac Karaman
more authors

This paper describes a real-time motion planning algorithm, based on the rapidly-exploring random tree (RRT) approach, applicable to autonomous vehicles operating in an urban environment. Extensions to the standard RRT are predominantly motivated by: 1) the need to generate dynamically feasible plans in real-time; 2) safety requirements; 3) the constraints dictated by the uncertain operating (urban) environment. The primary novelty is in the use of closed-loop prediction in the framework of RRT. The proposed algorithm was at the core of the planning and control software for Team MIT's entry for the 2007 DARPA Urban Challenge, where the vehicle demonstrated the ability to complete a 60 mile simulated military supply mission, while safely interacting with other autonomous and human driven vehicles.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:17 ,  Issue: 5 )