By Topic

Model Predictive Control for Stochastic Resource Allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Castanon, David A. ; Dept. of Electr. & Comput. En- gieering, Boston Univ., Boston, MA, USA ; Wohletz, J.M.

In this paper, we consider a class of stochastic resource allocation problems where resources assigned to a task may fail probabilistically to complete assigned tasks. Failures to complete a task are observed before new resource allocations are selected. The resulting temporal resource allocation problem is a stochastic control problem, with a discrete state space and control space that grow in cardinality exponentially with the number of tasks. We modify this optimal control problem by expanding the admissible control space, and show that the resulting control problem can be solved exactly by efficient algorithms in time that grows nearly linear with the number of tasks. The approximate control problem also provides a bound on the achievable performance for the original control problem. The approximation is used as part of a model predictive control (MPC) algorithm to generate resource allocations over time in response to information on task completion status. We show in computational experiments that, for single resource class problems, the resulting MPC algorithm achieves nearly the same performance as the optimal dynamic programming algorithm while reducing computation time by over four orders of magnitude. In multiple resource class experiments involving 1000 tasks, the model predictive control performance is within 4% of the performance bound obtained by the solution of the expanded control space problem.

Published in:

Automatic Control, IEEE Transactions on  (Volume:54 ,  Issue: 8 )