Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Analysis of an apoptotic core model focused on experimental design using artificial data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schlatter, R. ; Inst. for Syst. Dynamics, Univ. of Stuttgart, Stuttgart, Germany ; Conzelmann, H. ; Gilles, E.D. ; Sawodny, O.
more authors

The activation of caspases is a central mechanism in apoptosis. To gain further insights into complex processes like this, mathematical modelling using ordinary differential equations (ODEs) can be a very powerful research tool. Unfortunately, the lack of measurement data is a common problem in building such kinetic models, because it practically constrains the identifiability of the model parameters. An existing mathematical model of caspase activation during apoptosis was used in order to design future experimental setups that will help to maximise the obtained information. For this purpose, artificial measurement data are generated in silico to simulate potential experiments, and the model is fitted to this data. The model is also analysed using observability gramian and sensitivity analyses. The used analysis methods are compared. The artificial data approach allows one to make conclusions about system properties, identifiability of parameters and the potential information content of additional measurements for the used caspase activation model. The latter facilitates to improve the experimental design of further measurements significantly. The performed analyses reveal that several kinetic parameters are not at all, or only scarcely, identifiable, and that measurements of activated caspase 8 will maximally improve the parameter estimates. Furthermore, we can show that many assays with inhibitor of apoptosis protein (IAP) knockout cells only provide redundant information for our needs and as such do not have to be carried out.

Published in:

Systems Biology, IET  (Volume:3 ,  Issue: 4 )