Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Towards automated verification of layered graph transformation specifications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rafe, V. ; Dept. of Comput. Eng., Iran Univ. of Sci. & Technol., Tehran, Iran ; Rahmani, A.T. ; Baresi, L. ; Spoletini, P.

Graph transformation systems have recently become more and more popular as a general formal modelling language. It is a suitable formalism for modelling different systems like distributed and complex systems. However, modelling must be complemented with proper analysis capabilities to let the user understand how designed models behave and whether stated requirements are fulfilled and model checking has proven to be a viable solution for this purpose. The authors propose an efficient solution for model checking attributed typed and layered graph transformation systems. Layered graph transformation systems are a powerful formalism to formally model different systems like hierarchical systems. In our proposal, AGG layered graph transformation specifications are translated to Bandera intermediate representation (BIR) - the input language of a Bogor model checker - and then Bogor verifies the model against some interesting properties defined by combining LTL (linear temporal logic) and special graph rules. The experimental results are encouraging and show that in most cases our proposal improves existing approaches, in terms of both performance and expressiveness.

Published in:

Software, IET  (Volume:3 ,  Issue: 4 )