Cart (Loading....) | Create Account
Close category search window
 

Two-bit transform based block motion estimation using second derivatives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nam-Joon Kim ; Dept. of Electr. Eng., Seoul Nat. Univ., Seoul, South Korea ; Erturk, S. ; Hyuk-Jae Lee

Binary motion estimation algorithms reduce the computational complexity of motion estimation, but, sometimes generate an inaccurate motion vector. This paper proposes a novel two-bit representation, called twobit transform-second derivatives (2BT-SD) which improves the efficiency of image binarization and the accuracy of motion estimation by making use of the positive and negative second derivatives independently in the derivation of the second bit plane. The second derivatives are also used to detect flat or background regions, avoiding expensive motion vector search operations for macroblocks in these areas, and deriving the motion vectors by prediction from neighboring blocks. In applying the proposed 2BT-SD in the H.264/AVC standard, a further reduction of motion estimation complexity with a minor accuracy reduction is achieved by using 2BT-SD representation for secondary motion estimation while using the full resolution representation for the primary motion estimation. A hardware cost analysis shows that about 209 K gates of hardware logics and 2.7 K bytes of memory are reduced by 2BT-SD for motion estimation of 1280times720 size videos when compared with the full resolution motion estimation. Experiments show that the proposed 2BT-SD achieves better motion estimation accuracy than other binary motion estimations and provides faster processing time in flat or background regions with an acceptable bit-rate increase.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 2 )

Date of Publication:

May 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.