By Topic

Automatic video-based human motion analyzer for consumer surveillance system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Weilun Lao ; Eindhoven University of Technology ; Jungong Han ; Peter H. n. De With

With the continuous improvements in video-analysis techniques, automatic low-cost video surveillance gradually emerges for consumer applications. Video surveillance can contribute to the safety of people in the home and ease control of home-entrance and equipment-usage functions. In this paper, we study a flexible framework for semantic analysis of human behavior from a monocular surveillance video, captured by a consumer camera. Successful trajectory estimation and human-body modeling facilitate the semantic analysis of human activities and events in video sequences. An additional contribution is the introduction of a 3-D reconstruction scheme for scene understanding, so that the actions of persons can be analyzed from different views. The total framework consists of four processing levels: (1) a preprocessing level including background modeling and multiple-person detection, (2) an object-based level performing trajectory estimation and posture classification, (3) an event-based level for semantic analysis, and (4) a visualization level including camera calibration and 3-D scene reconstruction. Our proposed framework was evaluated and has shown its good quality (86% accuracy of posture classification and 90% for events) and effectiveness, as it achieves a near real-time performance (6-8 frames/second).

Published in:

IEEE Transactions on Consumer Electronics  (Volume:55 ,  Issue: 2 )