By Topic

CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

18 Author(s)
Serrano-Gotarredona, R. ; Consejo Super. de Investig. Cientificas, Seville Microelectron. Inst., Seville, Spain ; Oster, M. ; Lichtsteiner, P. ; Linares-Barranco, A.
more authors

This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asynchronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45 k neurons (spiking cells), up to 5 M synapses, performs 12 G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.

Published in:

Neural Networks, IEEE Transactions on  (Volume:20 ,  Issue: 9 )