By Topic

A Lattice Boltzmann Method for Image Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qianshun Chang ; Inst. of Appl. Math., Chinese Acad. of Sci., Beijing, China ; Tong Yang

In this paper, we construct a Lattice Boltzmann scheme to simulate the well known total variation based restoration model, that is, ROF model. The advantages of the Lattice Boltzmann method include the fast computational speed and the easily implemented fully parallel algorithm. A conservative property of the LB method is discussed. The macroscopic PDE associated with the LB algorithm is derived which is just the ROF model. Moreover, the linearized stability of the method is analyzed. The numerical computations demonstrate that the LB algorithm is efficient and robust. Even though the quality of the restored images is slightly lower than those by using the ROF model, the restored images of the LB method are satisfactory. Furthermore, computational speed of the LB method is much faster than ROF model. In general, CPU time of the LB method for restored images is about one tenth of ROF model.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 12 )