By Topic

Vaccine-Enhanced Artificial Immune System for Multimodal Function Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Woldemariam, K.M. ; Intell. Syst. & Control Lab., Oklahoma State Univ., Stillwater, OK, USA ; Yen, G.G.

This paper emulates a biological notion in vaccines to promote exploration in the search space for solving multimodal function optimization problems using artificial immune systems (AISs). In this method, we first divide the decision space into equal subspaces. The vaccine is then randomly extracted from each subspace. A few of these vaccines, in the form of weakened antigens, are then injected into the algorithm to enhance the exploration of global and local optima. The goal of this process is to lead the antibodies to unexplored areas. Using this biologically motivated notion, we design the vaccine-enhanced AIS for multimodal function optimization, achieving promising performance.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:40 ,  Issue: 1 )