By Topic

Principal Neighborhood Dictionaries for Nonlocal Means Image Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Tolga Tasdizen ; Electr. & Comput. Eng. Dept., Univ. of Utah, Salt Lake City, UT, USA

We present an in-depth analysis of a variation of the nonlocal means (NLM) image denoising algorithm that uses principal component analysis (PCA) to achieve a higher accuracy while reducing computational load. Image neighborhood vectors are first projected onto a lower dimensional subspace using PCA. The dimensionality of this subspace is chosen automatically using parallel analysis. Consequently, neighborhood similarity weights for denoising are computed using distances in this subspace rather than the full space. The resulting algorithm is referred to as principal neighborhood dictionary (PND) nonlocal means. We investigate PND's accuracy as a function of the dimensionality of the projection subspace and demonstrate that denoising accuracy peaks at a relatively low number of dimensions. The accuracy of NLM and PND are also examined with respect to the choice of image neighborhood and search window sizes. Finally, we present a quantitative and qualitative comparison of PND versus NLM and another image neighborhood PCA-based state-of-the-art image denoising algorithm.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 12 )