By Topic

A Comparison of Optimization Algorithms for Biological Neural Network Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. J. Yin ; Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong ; Wallace K. S. Tang ; K. F. Man

Recently, the identification of biological neural networks has been reformulated as an optimization problem based on a framework of adaptive synchronization. In this paper, four different optimization algorithms, including genetic algorithm, jumping gene genetic algorithm (JGGA), tabu search, and simulated annealing, have been applied for this optimization problem. Based on the simulation results, their performances are compared, and it is concluded that JGGA can outperform the other three methods in term of minimizing the synchronization and parameter estimation errors.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:57 ,  Issue: 3 )