By Topic

Hash-Based Identification of Sparse Image Tampering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tagliasacchi, M. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Valenzise, G. ; Tubaro, S.

In the last decade, the increased possibility to produce, edit, and disseminate multimedia contents has not been adequately balanced by similar advances in protecting these contents from unauthorized diffusion of forged copies. When the goal is to detect whether or not a digital content has been tampered with in order to alter its semantics, the use of multimedia hashes turns out to be an effective solution to offer proof of legitimacy and to possibly identify the introduced tampering. We propose an image hashing algorithm based on compressive sensing principles, which solves both the authentication and the tampering identification problems. The original content producer generates a hash using a small bit budget by quantizing a limited number of random projections of the authentic image. The content user receives the (possibly altered) image and uses the hash to estimate the mean square error distortion between the original and the received image. In addition, if the introduced tampering is sparse in some orthonormal basis or redundant dictionary, an approximation is given in the pixel domain. We emphasize that the hash is universal, e.g., the same hash signature can be used to detect and identify different types of tampering. At the cost of additional complexity at the decoder, the proposed algorithm is robust to moderate content-preserving transformations including cropping, scaling, and rotation. In addition, in order to keep the size of the hash small, hash encoding/decoding takes advantage of distributed source codes.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 11 )