By Topic

On Provisioning in All-Optical Networks: An Impairment-Aware Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Smita Rai ; Dept. of Comput. Sci., Univ. of California, Davis, CA, USA ; Ching-Fong Su ; Biswanath Mukherjee

We investigate connection provisioning in an all-optical wavelength-division multiplexing (WDM) network in the presence of physical-layer impairments. As the channel bit rate increases, impairments pose a more serious problem, and lightpaths need to be routed intelligently, so that the destination node receives the signal with adequate quality. We study the models of major physical impairments that affect optical signals. With reasonable assumptions, we model the major impairments as link-based metrics and we formulate schemes for routing, which consider the impairment constraints imposed by the underlying physical infrastructure. Prior work in this area has focused on enumerating a set of paths based on criteria such as minimum hops/distances, and then selecting a path from this set based on complex calculations of signal quality. Our approach integrates verification of impairment constraints while searching for paths. Routing with multiple additive constraints being NP-hard, we give an optimal heuristic algorithm with fast execution time for practical networks, as well as a dynamic programming pseudo-polynomial-time algorithm for the case when one impairment constraint dominates. We also examine the case of a practical ??all-optical?? network with signal regeneration facility at some nodes. We explore routing in such a translucent network and discover that finding a simple feasible path passing through a regenerator is NP-complete.

Published in:

IEEE/ACM Transactions on Networking  (Volume:17 ,  Issue: 6 )