By Topic

Constraint-Based Anycasting Over Optical Burst Switched Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bathula, B.G. ; Sch. of Electron. & Electr. Eng., Univ. of Leeds, Leeds, UK ; Elmirghani, J.M.H.

We present a communication paradigm called ldquoanycasting,rdquo which is defined as delivering traffic from a source node to any one destination among a set of recipients in the network. An anycasting message finds an appropriate server that can meet the service requirements of the client effectively. We discuss the mathematical framework to provide quality of service (QoS) for anycasting over optical burst switched networks. These QoS parameters include resource availability, reliability, propagation delay, and quality of transmission. With the help of link-state information available at each network element (NE), the bursts are scheduled to their next link. This decentralized way of routing helps to provide optimal QoS and hence decreases the loss of grid jobs due to multiple constraints. We compare the performance of our proposed algorithm with the shortest-path algorithm. Using simulation results performed on different network topologies, we show that the service-aware anycasting paradigm introduced decreases the number of bursts lost.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:1 ,  Issue: 2 )