Cart (Loading....) | Create Account
Close category search window

Detrimental impact of technological processes on BTI reliability of advanced high-K/metal gate stacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

A systematic study of mobility performances and Bias Temperature Instability (BTI) reliability was done on a large variety of advanced dielectric stacks. We clearly demonstrate that mobility performances and NBTI reliability are strongly correlated and that they are affected by the diffusion of nitrogen species N at the Si interface. Reducing the metal gate thickness favors the reduction of mobility degradations and NBTI, but, also strongly enhances PBTI, due to a complex set of reactions in the gate oxide. An optimum gate thickness must be found to obtain an acceptable trade off between device performance and reliability requirements.

Published in:

Reliability Physics Symposium, 2009 IEEE International

Date of Conference:

26-30 April 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.