Cart (Loading....) | Create Account
Close category search window

Application of network identification by deconvolution method to the thermal analysis of the pump-probe transient thermoreflectance signal

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ezzahri, Y. ; Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, California 95064-1077, USA ; Shakouri, A.

Your organization might have access to this article on the publisher's site. To check, click on this link: 

The paper discusses the possibility to apply network identification by deconvolution (NID) method to the analysis of the thermal transient behavior due to a laser delta pulse excitation in a pump-probe transient thermoreflectance experiment. NID is a method based on linear RC network theory using Fourier’s law of heat conduction. This approach allows the extraction of the thermal time constant spectrum of the sample under study after excitation by either a step or pulse function. Furthermore, using some mathematical transformations, the method allows analyzing the detail of the heat flux path through the sample, starting from the excited top free surface, by introducing two characteristic functions: the cumulative structure function and the differential structure function. We start by a review of the theoretical background of the NID method in the case of a step function excitation and then show how this method can be adjusted to be used in the case of a delta pulse function excitation. We show how the NID method can be extended to analyze the thermal transients of many optical experiments in which the excitation function is a laser pulse. The effect of the semi-infinite substrate as well as extraction of the interface and thin film thermal resistances will be discussed.

Published in:

Review of Scientific Instruments  (Volume:80 ,  Issue: 7 )

Date of Publication:

Jul 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.