Cart (Loading....) | Create Account
Close category search window
 

On Human-Machine Interaction during Online Image Classifier Training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Lughofer, E. ; Dept. of Knowledge-based Math. Syst., Johannes Kepler Univ., Linz, Austria ; Smith, J. ; Caleb-Solly, P. ; Tahir, M.A.
more authors

This paper considers a number of issues that arise when a trainable machine vision system learns directly from humans, rather than from a "cleaned" data set, i.e. data items which are perfectly labelled with complete accuracy. This is done within the context of a generic system for the visual surface inspection of manufactured parts. The issues treated are relevant not only to wider computer vision applications, but also to classification more generally. Some of these issues arise from the nature of humans themselves: they will be not only internally inconsistent, but will often not be completely confident about their decisions, especially if they are making decisions rapidly. People will also often differ systematically from each other in the decisions they make. Other issues may arise from the nature of the process, which may require the machine learning to have the capacity for real-time, online adaptation in response to users' input. It may be that the users cannot always provide input to a consistent level of detail. We describe how all of these issues may be tackled within a coherent methodology. Using a range of classifiers trained on real data sets from a CD imprint production process, we will present results which show that properly addressing most of these issues may actually lead to improved performance.

Published in:

Computational Intelligence for Modelling Control & Automation, 2008 International Conference on

Date of Conference:

10-12 Dec. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.