By Topic

Factorization methods for projective structure and motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Triggs, B. ; Inst. Nat. de Recherche en Inf. et Autom., Montbonnot Saint-Martin, France

This paper describes a family of factorization-based algorithms that recover 3D projective structure and motion from multiple uncalibrated perspective images of 3D points and lines. They can be viewed as generalizations of the Tomasi-Kanade algorithm from affine to fully perspective cameras, and from points to lines. They make no restrictive assumptions about scene or camera geometry, and unlike most existing reconstruction methods they do not rely on `privileged' points or images. All of the available image data is used, and each feature in each image is treated uniformly. The key to projective factorization is the recovery of a consistent set of projective depths (scale factors) for the image points: this is done using fundamental matrices and epipoles estimated from the image data. We compare the performance of the new techniques with several existing ones, and also describe an approximate factorization method that gives similar results to SVD-based factorization, but runs much more quickly for large problems

Published in:

Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on

Date of Conference:

18-20 Jun 1996