Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Application of Cellular Automata Modeling to Simulate Bottom Hole Assembly Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Qing-you Liu ; State Key Lab. of Oil & Gas Reservoir Geol. & Exploitation, Southwest Pet. Univ., Chengdu, China ; Jia-jia Jing ; Yan Yang

Bottom hole assembly (BHA) component failures continue to afflict the oil and gas industry, annually involving huge amount of direct and consequential cost. However, actual assemblies and drilling situations are too complex to rely on the simpler idealizations that do not account for varying collar dimensions, material properties, and multistabilizer arrangements. Recognizing this, cellular automata (CA), an idealizations of complex systems which is especially advantageous for modeling complex dynamic problems, is used to simulate BHA performance in this paper. At first, a drill string dynamic model is established, and the collision conditions between the drilling string and well wall are obtained. Then a new numerical solution method based on CA is proposed to solve the model. In the end, a practical example with a widely used tower type BHA is given, successfully solved, and the computational results are presented. The solutions for this assembly show various reaction forces, displacements and the position of tangent points. From the side force at the bit, the general inclination tendency can be determined, and the stability of the BHA can also be evaluated by the position of tangent points and their forces. This new method has advantages of programming simply, applying boundary condition easily, small calculation storage space and rapid convergence rate etc.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:2 )

Date of Conference:

March 31 2009-April 2 2009