By Topic

Digital Mammogram Tumor Preprocessing Segmentation Feature Extraction and Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Valliappan Raman ; Sch. of Comput. & Design, Swinburne Univ. of Technol., Kuching, Malaysia ; Patrick Then ; Putra Sumari

Mammography has been one of the most reliable methods for early detection of breast carcinomas. The main objective of this paper is to detect and segment the tumor from mammogram images that helps to provide support for the clinical decision to perform biopsy of the breast. In this paper, there are two aspects to segmentation in mammography. First is to separate out the mammogram from the background and the identification of putative masses and the pectoral muscle. The extraction approach is done using basic region growing method to identify the tumor. Second is to extract the features from segmented masses and classifies the masses by case base reasoning method. The experimental results are shown in this paper till the first phase of mass segmentation.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:2 )

Date of Conference:

March 31 2009-April 2 2009