By Topic

Structural Equation Modeling of Atherosclerotic Risk Factor Interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chan, L.W.C. ; Dept. of Health Technol. & Inf., Hong Kong Polytech. Univ., Kowloon, China

Atherosclerosis results from chronic inflammatory processes involving a huge number of risk factor, such as lipid profile, glycated hemoglobin and oxidative stress. Signaling pathways are not enough to explain the holistic interactions. The combined use of principal component analysis and structural equation modeling is a good choice to investigate the causality between risk factors so as to complement the missing links and information in the published pathways. The result of demonstrates the combined use of these two methods in clustering of interacting risk factors and modeling their interactions. The clustered risk factors represent related features with causality. The most dominant cluster is the group of antioxidant, consisting of the essential substances responsible for eliminating harmful reactive oxygen species (ROS) and preventing atherosclerosis. The path model also uncovers the underlying interaction and balance between ascorbic acid and uric acid in human body.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:1 )

Date of Conference:

March 31 2009-April 2 2009