By Topic

An Improved Differential Evolution for Multi-objective Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ke Li ; Inst. of Inf. Eng., Xiangtan Univ., Xiangtan, China ; Jinhua Zheng ; Cong Zhou ; Hui Lv

Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear and complex problems. However, these population-based algorithms are computationally expensive due to the slow nature of the evolutionary process. This paper proposes an improved differential evolution algorithm (CDE). On the one hand CDE combines the advantages of DE with the mechanisms of Pareto based ranking and crowding distance sorting which are similar to the NSGA-II, on the other hand different from the previous DE, CDE compares the trial vector to its nearest neighbor to decide whether to preserve it. Experimental results confirm that CDE outperforms the other two classical multi-objective evolutionary algorithms (MOEAs) NSGA-II and SPEA2 in terms of diversity and convergence.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:4 )

Date of Conference:

March 31 2009-April 2 2009