Cart (Loading....) | Create Account
Close category search window

Interactive learning with a “Society of Models”

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minka, T.P. ; Vision & Modeling Group, MIT, Cambridge, MA, USA ; Picard, R.W.

Digital library access is driven by features, but the relevance of a feature for a query is not always obvious. This paper describes an approach for integrating a large number of context-dependent features into a semi-automated tool. Instead of requiring universal similarity measures or manual selection of relevant features, the approach provides a learning algorithm for selecting and combining groupings of the data, where groupings can be induced by highly specialized features. The selection process is guided by positive and negative examples from the user. The inherent combinatorics of using multiple features is reduced by a multistage grouping generation, weighting, and collection process. The stages closest to the user are trained fastest and slowly propagate their adaptations back to earlier stages. The weighting stage adapts the collection stage's search space across uses, so that, in later interactions, good groupings are found given few examples from the user

Published in:

Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on

Date of Conference:

18-20 Jun 1996

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.