By Topic

Automatic Term Recognition Based on Data-Mining Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srajerova, D. ; Fac. of Arts, Charles Univ., Prague, Czech Republic ; Kovarik, O. ; Cvrcek, V.

We present a new method for automatic term extraction which is based on training datasets created to build inductive models for term identification. Existing approaches employ simple statistical and linguistic rules designed merely ad-hoc and are unable to utilize complex relations of linguistic units. In contrast to those approaches, our method does not require such manually ascribed rules of extraction. The data for our research is taken from the Czech National Corpus which is lemmatised and morphologically tagged. Statistical information (frequency, distribution etc.) is generated automatically and thus the only expert contribution needed is to label terms in the training dataset.The data mining software creates models that perform the extraction without any further human input. Additionally, feature ranking can serve as valuable aid for understanding of the extraction process and its future development and in terminology research.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:4 )

Date of Conference:

March 31 2009-April 2 2009