Cart (Loading....) | Create Account
Close category search window
 

Ordinal measures for visual correspondence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhat, D.N. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Nayar, S.K.

We present ordinal measures for establishing image correspondence. Linear correspondence measures like correlation and the sum of squared differences are known to be fragile. Ordinal measures, which are based on relative ordering of intensity values in windows, have demonstrable robustness to depth discontinuities, occlusion and noise. The relative ordering of intensity values in each window is represented by a rank permutation which is obtained by sorting the corresponding intensity data. By using a novel distance metric between the rank permutations, we arrive at ordinal correlation coefficients. These coefficients are independent of absolute intensity scale, i.e. they are normalized measures. Further, since rank permutations are invariant to monotone transformations of the intensity values, the coefficients are unaffected by nonlinear effects like gamma variation between images. We have developed a simple algorithm for their efficient implementation. Experiments suggest the superiority of ordinal measures over existing techniques under non-ideal conditions. Though we present ordinal measures in the context of stereo, they serve as a general tool for image matching that is applicable to other vision problems such as motion estimation and image registration

Published in:

Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on

Date of Conference:

18-20 Jun 1996

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.