Cart (Loading....) | Create Account
Close category search window

Risk Perception in Modeling Malware Propagation in Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chang-guang Wang ; Dept. of Network Eng., Hebei Normal Univ., Shijiazhuang, China ; Shuai Fu ; Xu Bai ; Li-jing Bai

We investigate the effects of risk perception in a SIS model for malware propagating in different types of networks such as regular, random and scale-free. We assume that the perception of the risk of being infected rely on the fraction of neighbors that are infected. The effects are mainly affected by two parameters denoted by J and ¿, which models the linear response and nonlinear effects respectively. They can reduce the infectivity of the malware as a function of the infected neighbors. We study the models in the mean-field approximation and by numerical simulations for the three kinds of networks. The results show that for homogeneous and random networks, there is always a value of perception that stops the malwares. But in the ¿worst case¿ scenario of a scale-free network with diverging connectivity, a linear perception cannot stop the malwares. With the nonlinear increase of the perception risk, however, the malware tends to be extinct. This transition is not continuous and is presumably induced by fluctuations in center nodes such as hubs or switches. An understanding of the risk perception in modeling malware propagation in networks is very important for designing effective detection and prevention strategies for such networks.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:3 )

Date of Conference:

March 31 2009-April 2 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.