Cart (Loading....) | Create Account
Close category search window
 

Discriminative Canonical Correlation Analysis with Missing Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tingkai Sun ; Sch. of Comput. Sci. & Technol., Nanjing Univ. of Sci. & Technol., Nanjing, China ; Songcan Chen ; Jingyu Yang ; Xuelei Hu
more authors

Multimodal recognition emerges when the non-robustness of unimodal recognition is noticed in real applications. Canonical correlation analysis (CCA) is a powerful tool of feature fusion for multimodal recognition. However, in CCA, the samples must be pairwise, and this requirement may not easily be met due to various unexpected reasons. Additionally, the class information of the samples is not fully exploited in CCA. These disadvantages restrain CCA from extracting more discriminative features for recognition. To tackle these problems, in this paper, the class information is incorporated into the framework of CCA for recognition, and a novel method for multimodal recognition, called discriminative canonical correlation analysis with missing samples (DCCAM), is proposed. DCCAM can tolerate the missing of samples and need not artificially make up the missing samples so that its computation is timesaving and space-saving. The experimental results show that 1) DCCAM outperforms the related multimodal recognition methods; and 2) the recognition accuracy of DCCAM is relatively insensitive to the number of missing samples.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:6 )

Date of Conference:

March 31 2009-April 2 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.