By Topic

Application of Grey-Cascade Neural Network Model to Reservoir Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wu Guo-ping ; China Univ. of Geosci., Wuhan, China ; Cheng Shi ; Ao Min-si ; Xu Zhong-xiang
more authors

Well-log data and the associated extracted attributes have allowed better description of reservoir heterogeneities and more realistic assessment of oil and gas in place. However, the establishment of a complicated nonlinear relationship between logging attributes and reservoir properties has been a major challenge for working geoscientists. Although back propagation neural network is widely and successfully adopted in reservoir prediction, there have been several problems encountered, such as being slow to converge and easy to reach extreme minimum value. To overcome the shortcomings of traditional BP algorithm, a novel reservoir prediction model is presented which uses grey relational analysis technique to optimize the training samples of BP neural network, and a cascade neural network to achieve a higher speed and a lower error rate in identifying reservoir. The effectiveness of these neural network techniques in well-log interpretation is demonstrated in this paper through a real data example from Tarim Basin in China.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:6 )

Date of Conference:

March 31 2009-April 2 2009