Cart (Loading....) | Create Account
Close category search window

A Semi-supervised SVM Based Incorporation Prior Biological Knowledge for Recognizing Translation Initiation Sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Juncai Huang ; Coll. of Comput. Sci. & Eng., Univ. of Electron. Sci. & Technol. of China, Chengdu, China ; Fengbi Wang ; Yangji Ou ; Mingtian Zhou

In this study, we propose a Semi-Supervised Support Vector Machine (S3VM) based incorporation prior biological knowledge for recognizing translation initiation sites (TISs). The task of finding TIS can be modeled as a classification problem. S3VM builds a SVM classifier based on small amounts of labeled data and large amounts of unlabeled data, incorporates prior biological knowledge by engineering an appropriate kernel function with a batch-mode incremental training method. The algorithm has been implemented and tested on previously published data. Our experimental results on real nucleotide sequences data show that our methods improve the prediction accuracy greatly and our method performs significantly better than ESTSCAN and SVMs with Salzberg kernel.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:5 )

Date of Conference:

March 31 2009-April 2 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.