By Topic

Model-based estimation of 3D human motion with occlusion based on active multi-viewpoint selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kakadiaris, I.A. ; Dept. of Comput. & Inf. Sci., Pennsylvania Univ., Philadelphia, PA, USA ; Metaxas, D.

We present a new method for the 3D model-based tracking of human body parts. To mitigate the difficulties arising due to occlusion among body parts, we employ multiple calibrated cameras in a mutually orthogonal configuration. In addition, we develop criteria for a time varying active selection of a set of cameras to track the motion of a particular human part. In particular, at every frame, each camera tracks a number of parts depending on the visibility of these parts and the observability of their predicted motion from the specific camera. To relate points on the occluding contours of the parts to points on their models we apply concepts from projective geometry. Then, within the physics-based framework we compute the generalized forces applied from the parts' occluding contours to model points of the body parts. These forces update the translational and rotational degrees of freedom of the model, such as to minimize the discrepancy between the sensory data and the estimated model state. We present initial tracking results from a series of experiments involving the recovery of complex 3D motions in the presence of significant occlusion

Published in:

Computer Vision and Pattern Recognition, 1996. Proceedings CVPR '96, 1996 IEEE Computer Society Conference on

Date of Conference:

18-20 Jun 1996