By Topic

Combining Speech Enhancement and Discriminative Feature Extraction for Robust Speaker Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhang Yan ; Jinling Inst. of Technol., Nanjing, China ; Tang Zhenmin ; Li Yanping

It is well known that discriminative feature and effective robust processing are two key techniques. This paper presents a new strategy which combining speech enhancement and discriminative feature in order to overcome the acoustics mismatch between training and testing data in the noise environment. On the one hand, a comparison results in two noise environments indicate that the recognition rates based on DFCC are averagely higher 6.11% (White noise) and 8%(Factory noise) respectively than MFCC, which confirmed that the effectiveness of discriminative and robustness of DFCC. On the other hand, when combining speech enhancement and discriminative feature, the improvement based on SMFCC is limited, only 0.93%, 1.87%, while the performance has been improved by 2.54%, 2.31% based on SDFCC.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:5 )

Date of Conference:

March 31 2009-April 2 2009