Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Increasing Robustness of SAT-based Delay Test Generation Using Efficient Dynamic Learning Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eggersgluss, S. ; Inst. of Comput. Sci., Univ. of Bremen, Bremen, Germany ; Drechsler, R.

Due to the increased speed in modern designs, testing for delay faults has become an important issue in the post-production test of manufactured chips. A high fault coverage is needed to guarantee the correct temporal behavior. Today's ATPG algorithms have difficulties to reach the desired fault coverage due to the high complexity of modern designs. In this paper, we describe how to efficiently integrate the reuse of learned information into state-of-the-art SAT-based ATPG algorithms and, by this, reduce the number of unclassified faults significantly. For further reduction, a post-classification phase is presented. Experimental results for ATPG for delay faults on large industrial circuits show the robustness and feasibility of the approach.

Published in:

Test Symposium, 2009 14th IEEE European

Date of Conference:

25-29 May 2009