By Topic

Structuring Cognitive Information for Software Complexity Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Auprasert, B. ; Dept. of Comput. Eng., Chulalongkorn Univ., Bangkok, Thailand ; Limpiyakorn, Y.

Cognitive complexity of software has emerged as an interesting research area recently with the growing studies in cognitive informatics disciplines. Cognitive complexity measurement attempts to quantify the software from the perspective of the difficulty for human brain to process and comprehend the software, in order to enable more precise prediction of the critical information about testability, reliability, and maintainability, as well as the effort spent in the software project. Cognitive informatics theories suggest that cognitive complexity of software depends on fundamental factors such as inputs, outputs, loops/branches structure, and number of operators and operands. Analysis in this paper shows the significant flaw of current cognitive complexity measures that they quantify the factors without considering the dependencies among them. We therefore propose a new method to solve this problem by structuring the factors. The proposed measure was evaluated comparatively to existing metrics, and also proven by satisfying all nine Weyuker's properties.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:7 )

Date of Conference:

March 31 2009-April 2 2009