By Topic

Boosting for Learning a Similarity Measure in 2DPCA Based Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhijie Xu ; Sch. of Sci., Beijing Univ. of Civil Eng. & Archit., Beijing, China ; Jianqin Zhang ; Xiwu Dai

In this paper we address the problem of identifying the similarity measure for face recognition. The similarity measure plays an important role in pattern classification. However, with reference to 2D image matrix based methods for face recognition, such as two dimensional principal component analysis (2DPCA), where the features extracted are matrixes instead of single vectors, studies on the similarity measure are quite few. We propose a new method to identify the similarity measure by boosting, which is called boosted similarity measure. Experimental results on two famous face databases show that generally the proposed method outperforms the state of the art methods.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:7 )

Date of Conference:

March 31 2009-April 2 2009