By Topic

Discrete time neural network synthesis using input and output activation functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Novakovic, B.M. ; FSB, Zagreb Univ., Croatia

A new very fast algorithm for synthesis of a new structure of discrete-time neural networks (NN) is proposed. For this purpose the following concepts are employed: (i) combination of input and output activation functions, (ii) input time-varying signal distribution, (iii) time-discrete domain synthesis and (iv) one-step learning iteration approach. The problem of input-output mappings of time-varying vectors is solved. Simulation results based on the synthesis of a new structure of feedforward NN of an universal logical unit are presented. The proposed NN synthesis procedure is useful for applications to identification and control of nonlinear, very fast, dynamical systems. In this sense a feedforward NN for an adaptive nonlinear robot control is designed. Finally, a new algorithm for the direct inverse modeling of input/output nonquadratic systems is discussed

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:26 ,  Issue: 4 )