By Topic

Abnormal Noise Detection Method Based on Wavelet Filter and K-L Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zhang Gen-Yuan ; Zhejiang Univ. of Media & Commun., Hangzhou, China

De-noising and extraction of the abnormal noise signature are important to analyze signal in which abnormal noise are often very weak and masked by noise. The wavelet transform has been widely used in signal de-noising due to its extraordinary time-frequency representation capability. In this paper, the wavelet filter-based de-noising methods are introduced to de-noise signals from mechanical defects. In order to select optimal parameters for the wavelet filter, a two-step optimization process is proposed. A periodicity detection method based on singular value decomposition (SVD) and K-L information modeling are used to choose the appropriate scale for the wavelet transform. The experiment result reveals that wavelet filter is more suitable and reliable to detect abnormal noise of mechanical impulse-like defect signals.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:7 )

Date of Conference:

March 31 2009-April 2 2009