By Topic

Regional Style Automatic Identification for Chinese Folk Songs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Liu ; Inf. Sch., Renmin Univ. of China, Beijing, China ; Lei Wei ; Peng Wang

The Regional style is one of the basic characteristic of Chinese folk songs. Because of the distinctive regional characteristics of Chinese folk songs, lots of folk songs lovers search for music by regional style. Therefore, geographical style automatic identification for folk songs is an important topic both for academic and industrial area. This paper studies geographical style automatic identification with different machine learning methods. An active feature selection method is proposed to improve the classification accuracy, and discover the most important feature for regional style classification. The experiments results show that SVM with active feature selection is an approximate best method. The classification accuracy of this method is 82.97%, and the features are reduced to 35 dimensions. Moreover, an improved combining multiple classifiers method can get the highest classification accuracy, that is 84.29%. Relative works show that our methods are also very efficient in other areas like genre classification.

Published in:

Computer Science and Information Engineering, 2009 WRI World Congress on  (Volume:7 )

Date of Conference:

March 31 2009-April 2 2009