By Topic

Characteristics of the Series Resistance Extracted From Si Nanowire FETs Using the Y -Function Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Rock-Hyun Baek ; Pohang Univ. of Sci. & Technol. (POSTECH), Pohang, South Korea ; Chang-Ki Baek ; Sung-Woo Jung ; Yun Young Yeoh
more authors

The series resistance, R sd in silicon nanowire FETs (Si-NWFET) is extracted unambiguously, using the Y -function technique, in conjunction with the drain current and transconductance data. The volume channel inversion in Si-NWFET renders the charge carriers relatively free of the surface scattering and concomitant degradation of mobility. As a result, the Y -function of Si-NWFET is shown to exhibit a linear behavior in strong inversion, thereby enabling accurate extraction of R sd. The technique is applied to nanowire devices with channel lengths 82, 86, 96, 106, 132, and 164 nm, respectively. The extracted R sd values are shown nearly flat with respect to the gate voltage, as expected from Ohmic contacts but showed a large variation for all channel lengths examined. This indicates the process parameters involved in the formation of series contacts vary considerably from device to device. The present method only requires a single device for extraction of R sd and the iteration procedure for data fitting is fast and stable.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:9 ,  Issue: 2 )