By Topic

Can You See Me Now? Sensor Positioning for Automated and Persistent Surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yi Yao ; Global Res. Center, Gen. Electr., Niskayuna, NY, USA ; Chung-Hao Chen ; Besma Abidi ; David Page
more authors

Most existing camera placement algorithms focus on coverage and/or visibility analysis, which ensures that the object of interest is visible in the camera's field of view (FOV). However, visibility, which is a fundamental requirement of object tracking, is insufficient for automated persistent surveillance. In such applications, a continuous consistently labeled trajectory of the same object should be maintained across different camera views. Therefore, a sufficient uniform overlap between the cameras' FOVs should be secured so that camera handoff can successfully and automatically be executed before the object of interest becomes untraceable or unidentifiable. In this paper, we propose sensor-planning methods that improve existing algorithms by adding handoff rate analysis. Observation measures are designed for various types of cameras so that the proposed sensor-planning algorithm is general and applicable to scenarios with different types of cameras. The proposed sensor-planning algorithm preserves necessary uniform overlapped FOVs between adjacent cameras for an optimal balance between coverage and handoff success rate. In addition, special considerations such as resolution and frontal-view requirements are addressed using two approaches: 1) direct constraint and 2) adaptive weights. The resulting camera placement is compared with a reference algorithm published by Erdem and Sclaroff. Significantly improved handoff success rates and frontal-view percentages are illustrated via experiments using indoor and outdoor floor plans of various scales.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:40 ,  Issue: 1 )