By Topic

Monitoring in Industrial Systems Using Wireless Sensor Network With Dynamic Power Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Salvadori, F. ; Dept. of Technol., Univ. Regional do Noroeste do Estado do Rio Grande do Sul (UNIJUI), Ijui, Brazil ; de Campos, M. ; Sausen, P.S. ; de Camargo, R.F.
more authors

The advances in wireless communication, microelectronics, digital electronics, and highly integrated electronics and the increasing need for more efficient controlled electric systems make the development of monitoring and supervisory control tools the object of study of many researchers. This paper proposes a digital system for energy usage evaluation, condition monitoring, diagnosis, and supervisory control for electric systems applying wireless sensor networks (WSNs) with dynamic power management (DPM). The system is based on two hardware topologies responsible for signal acquisition, processing, and transmission: intelligent sensor modules (ISMs) and remote data acquisition units (RDAUs). The gateway function of the wired network is carried out by remote servers (RSs) based on the Soekris architecture, which is responsible for receiving the data collected and transmitting it to the supervisory controller (SC). To extend the WSN lifetime, sensor nodes implement a DPM protocol. The basic characteristics of the presented system are the following: 1) easy implementation; 2) low-cost implementation; 3) easy implementation of redundant routines (security); 4) portability/versatility; and 5) extended network lifetime.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 9 )