By Topic

Single- and Multi-core Configurable AES Architectures for Flexible Security

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mao-Yin Wang ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chih-Pin Su ; Chia-Lung Horng ; Cheng-Wen Wu
more authors

As networking technology advances, the gap between network bandwidth and network processing power widens. Information security issues add to the need for developing high-performance network processing hardware, particularly that for real-time processing of cryptographic algorithms. This paper presents a configurable architecture for Advanced Encryption Standard (AES) encryption, whose major building blocks are a group of AES processors. Each AES processor provides 219 block cipher schemes with a novel on-the-fly key expansion design for the original AES algorithm and an extended AES algorithm. In this multicore architecture, the memory controller of each AES processor is designed for the maximum overlapping between data transfer and encryption, reducing interrupt handling load of the host processor. This design can be applied to high-speed systems since its independent data paths greatly reduces the input/output bandwidth problem. A test chip has been fabricated for the AES architecture, using a standard 0.25-??m CMOS process. It has a silicon area of 6.29 mm2, containing about 200,500 logic gates, and runs at a 66-MHz clock. In electronic codebook (ECB) and cipher-block chaining (CBC) cipher modes, the throughput rates are 844.9, 704, and 603.4 Mb/s for 128-, 192-, and 256-b keys, respectively. In order to achieve 1-Gb/s throughput (including overhead) at the worst case, we design a multicore architecture containing three AES processors with 0.18-??m CMOS process. The throughput rate of the architecture is between 1.29 and 3.75 Gb/s at 102 MHz. The architecture performs encryption and decryption of large data with 128-b key in CBC mode using on-the-fly key generation and composite field S-box, making it more cost effective (with better thousand-gate/gigabit-per-second ratio) than conventional methods.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:18 ,  Issue: 4 )