Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Understanding the Effect of Process Variations on the Delay of Static and Domino Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Alioto, M. ; Dipt. di Ing. delllnformazione, Univ. di Siena, Siena, Italy ; Palumbo, G. ; Pennisi, M.

In this paper, the effect of process variations on delay is analyzed in depth for both static and dynamic CMOS logic styles. Analysis allows for gaining an insight into the delay dependence on fan-in, fan-out, and sizing in sub-100-nm technologies. Simple but reasonably accurate models are derived to capture the basic dependences. The effect of process variations in transistor stacks is analytically modeled and analyzed in detail. The impact of both interdie and intradie variations is evaluated and discussed. Interestingly, the input capacitance of static and dynamic logic is shown to be rather insensitive to variations. The delay variability was also shown to be a weak function of the input rise/fall time and load. Analysis shows that domino logic circuits suffer from a doubled variability as compared to the static CMOS logic style. The positive feedback associated with the keeper transistor is shown to be responsible for the variability increase, which, in turn, limits the speed performance. This adds to the well-known speed degradation due to the current contention associated with the keeper transistor. Monte Carlo simulations on a 90-nm technology, including layout parasitics, are performed to validate the results.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )