By Topic

Generation of Ultralow Jitter Optical Pulses Using Optoelectronic Oscillators With Time-Lens Soliton-Assisted Compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chembo, Y.K. ; Opt. Dept., FEMTO-ST Inst., Besancon, France ; Hmima, A. ; Lacourt, P.-A. ; Larger, L.
more authors

In this paper, we propose a new approach for the generation of ultralow jitter optical pulses using optoelectronic microwave oscillators. The short pulses are obtained through time-lens soliton-assisted compression of sinusoidally modulated prepulses, which are self-started from a conventional single-loop optoelectronic oscillator. The inherent ultralow phase noise of optoelectronic oscillators is converted into ultralow timing jitter for the generated pulses. We provide a time-domain model for the slowly varying amplitudes of the microwave and optical oscillations, and our analytical study is confirmed by numerical simulations and experimental measurements. We demonstrate the generation of 4.1 ps pulses along with a microwave whose phase noise is -140 dBc/Hz at 10 kHz from the 10 GHz carrier, with 2.7 fs jitter in the 1-10 kHz frequency band.

Published in:

Lightwave Technology, Journal of  (Volume:27 ,  Issue: 22 )