By Topic

VLSI Implementation of BCH Error Correction for Multilevel Cell NAND Flash Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Choi, Hyojin ; Sch. of Electr. Eng., Seoul Nat. Univ., Seoul, South Korea ; Wei Liu ; Wonyong Sung

Bit-error correction is crucial for realizing cost-effective and reliable NAND Flash-memory-based storage systems. In this paper, low-power and high-throughput error-correction circuits have been developed for multilevel cell (MLC) nand Flash memories. The developed circuits employ the Bose-Chaudhuri-Hocquenghem code to correct multiple random bit errors. The error-correcting codes for them are designed based on the bit-error characteristics of MLC NAND Flash memories for solid-state drives. To trade the code rate, circuit complexity, and power consumption, three error-correcting architectures, named as whole-page, sector-pipelined, and multistrip ones, are proposed. The VLSI design applies both algorithmic and architectural-level optimizations that include parallel algorithm transformation, resource sharing, and time multiplexing. The chip area, power consumption, and throughput results for these three architectures are presented.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )