Cart (Loading....) | Create Account
Close category search window

Spectrum Opportunity-Based Control Channel Assignment in Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lazos, L. ; Dept. of Electr. & Comput. Eng., Univ. of Arizona, Tucson, AZ, USA ; Sisi Liu ; Krunz, M.

We address the problem of dynamic assignment of coordination (control) channels in cognitive radio networks (CRNs) by exploiting time- and space-varying spectrum opportunities. Motivated by the inherent grouping of Cognitive Radio (CR) users according to channel availability, we propose a cluster-based architecture for control-channel assignment in a CRN. CRs are grouped in the same cluster if they roughly sense similar idle channels and are within communication range, either directly or via a cluster-head. We formulate the clustering design as a maximum edge biclique problem. A distributed cluster agreement algorithm called Spectrum-Opportunity Clustering (SOC) is proposed to solve this problem. SOC provides a desirable balance between two competing factors: the set of common idle channels within each cluster and the cluster size. A large set of common idle channels within each cluster allows graceful migration from the current control channel should primary radio (PR) activity appear on that channel. Hence, SOC provides a stable network partition with respect to local coordination, with no need for frequent re-clustering. Moreover, when re-clustering has to be performed (due to CR mobility or PR activity), CRs agree on new clusters after the broadcast of only three messages, thus incurring low communication overhead.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks, 2009. SECON '09. 6th Annual IEEE Communications Society Conference on

Date of Conference:

22-26 June 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.