By Topic

Preserving Source-Location Privacy in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yun Li ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Jian Ren

Wireless sensor networks (WSN) have the potential to be widely used in many areas for unattended event monitoring. Mainly due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized interception and detection. Privacy is becoming one of the major issues that jeopardize the successful deployment of wireless sensor networks. While confidentiality of the message can be ensured through content encryption, it is much more difficult to adequately address the source-location privacy. For WSN, source-location privacy service is further complicated by the fact that the sensor nodes consist of low-cost and low-power radio devices, computationally intensive cryptographic algorithms (such as public-key cryptosystems) and large scale broadcasting-based protocols are not suitable for WSN. In this paper, we propose a scheme to provide both content confidentiality and source-location privacy through routing to a randomly selected intermediate node (RRIN) and a network mixing ring (NMR), where the RRIN provides local source- location privacy and NMR yields network-level (global) source- location privacy. While being able to provide source-location privacy for WSN, our simulation results also demonstrate that the proposed scheme is very efficient and can be used for practical applications.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks, 2009. SECON '09. 6th Annual IEEE Communications Society Conference on

Date of Conference:

22-26 June 2009