By Topic

A method for considering and processing measurement uncertainty in Fuzzy Inference Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ferrero, A. ; Dipt. di Elettrotec., Politec. di Milano, Milan, Italy ; Federici, A. ; Salicone, S.

Fuzzy inference systems are generally employed to deal with complex systems, when a high model uncertainty is present in processing signals and data related to those systems. In most presently available fuzzy inference systems, uncertainty is not assigned to input data, even when they come from an experimental, in-field process. Recent proposals showed that fuzzy and random-fuzzy variables can be usefully employed to represent and process uncertainty in measurement, in close agreement with the metrology concepts defined in the presently available standards. Taking into account that the mathematical foundations of the fuzzy inference systems and the random-fuzzy variables are the same, this paper proposes an original, generalized approach to fuzzy inference systems, where the input quantities are random-fuzzy variables, so that measurement uncertainty can be considered throughout the whole fuzzy inference. The proposed method is applied to the classical example of the inverted pendulum control.

Published in:

Instrumentation and Measurement Technology Conference, 2009. I2MTC '09. IEEE

Date of Conference:

5-7 May 2009