By Topic

Statistical Blockade: Very Fast Statistical Simulation and Modeling of Rare Circuit Events and Its Application to Memory Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Singhee, A. ; IBM T J. Watson Res. Center, Yorktown Heights, NY, USA ; Rutenbar, R.A.

Circuit reliability under random parametric variation is an area of growing concern. For highly replicated circuits, e.g., static random access memories (SRAMs), a rare statistical event for one circuit may induce a not-so-rare system failure. Existing techniques perform poorly when tasked to generate both efficient sampling and sound statistics for these rare events. Statistical blockade is a novel Monte Carlo technique that allows us to efficiently filter-to block-unwanted samples that are insufficiently rare in the tail distributions we seek. The method synthesizes ideas from data mining and extreme value theory and, for the challenging application of SRAM yield analysis, shows speedups of 10 - 100 times over standard Monte Carlo.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 8 )