By Topic

Time-Domain Orthogonal Finite-Element Reduction-Recovery Method for Electromagnetics-Based Analysis of Large-Scale Integrated Circuit and Package Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duo Chen ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Dan Jiao

A time-domain orthogonal finite-element reduction-recovery method is developed to overcome the large problem sizes encountered in the simulation of large-scale integrated-circuit and package problems. In this method, a set of orthogonal prism vector basis functions is developed. Based on this set of bases, an arbitrary 3-D multilayered system such as a combined package and die is reduced to a single-layer system with negligible computational cost. More importantly, the reduced single-layer system is diagonal and, hence, can be solved readily. From the solution of the reduced system, the solution of the other unknowns is recovered in linear complexity. The method entails no theoretical approximation. It applies to any arbitrarily shaped multilayer structure involving inhomogeneous materials or any structure that can be geometrically modeled by triangular prism elements. In addition, it permits nonlinear device modeling and broadband simulation within one run. Numerical and experimental results have demonstrated its accuracy and high capacity in simulating on-chip, package, and die-package interface problems.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:28 ,  Issue: 8 )